Dilution, degradation, and time delays in Boolean network models

Elena Dimitrova

School of Mathematical and Statistical Sciences
Clemson University
http://edimit.people.clemson.edu/

Algebraic Biology
Motivation

We’ve seen how to incorporate the following features into ODE models:

- dilution of protein concentration due to cellular growth;
- degradation (or decay) of protein concentration;
- time-delays due to cellular processes.

In this section, we’ll see how to add these types of features to Boolean models.

Our Boolean models will be derived from the 3-variable and 5-variable ODE models from the previous lecture.
Dilution and degradation

Suppose \(Y \) regulates the production of \(X \).

Assume \(Y(t) = 1 \) implies \(X(t + 1) = 1 \). (activation takes 1 step).

Generally, the loss of \(X \) due to dilution and degradation takes \(n \) timesteps.

Introduce new variables \(X_{\text{old}}(1), X_{\text{old}}(2), \ldots, X_{\text{old}}(n-1) \).

Properties

(i) If \(Y(t) = 0 \) and \(X(t) = 1 \), then \(X_{\text{old}}(1)(t + 1) = 1 \). ("\(X \) has been reduced once by dilution & degradation.")

(ii) If \(Y(t) = 0 \) and \(X_{\text{old}}(i-1)(t) = 1 \), then \(X_{\text{old}}(i)(t + 1) = 1 \). ("\(X \) has been reduced \(i \) times by dilution & degradation.")

(iii) The number of “old” variables is determined by the number of timesteps required to reduce \([X]\) below the discretation threshold.

Thus, \(X(t + 1) = 1 \) when either of the following holds:

- \(Y(t) = 1 \) (new amount will be produced by \(t + 1 \)),
- \(X(t) \land X_{\text{old}}(n-1)(t) = 1 \) (previous amounts of \(X \) still available).

\[
X(t + 1) = Y(t) \lor \left(X(t) \land X_{\text{old}}(n)(t) \right)
\]
Other features

Time delays

Say R regulates production of X, delayed by time τ (n steps).

Introduce new variables R_1, R_2, \ldots, R_n, with transition functions:

\[
\begin{align*}
R_1(t + 1) &= R(t) \\
R_2(t + 1) &= R_1(t) \\
R_3(t + 1) &= R_2(t) \\
&\vdots \\
R_{n-1}(t + 1) &= R_{n-2}(t) \\
X(t + 1) &= R_n(t)
\end{align*}
\]

Medium levels of lactose

Introduce a new variable L_m meaning “at least medium levels” of lactose. Clearly, $L = 1$ implies $L_m = 1$.

- High lactose: $L = 1, L_m = 1$.
- Medium lactose: $L = 0, L_m = 1$.
- Low lactose levels: $L = 0, L_m = 0$.

We can ignore any state for which $L = 1, L_m = 0$.
Estimating constants for our Boolean model

3-variable ODE model of the *lac* operon (Yildirim and Mackey, 2004)

Let $M(t) = \text{mRNA}$, $B(t) = \beta$-galactosidase, and $A(t) = \text{allolactose (concentrations)}$, respectively.

\[
\frac{dM}{dt} = \alpha_M \frac{1 + K_1(e^{-\mu \tau_M} A_{\tau_M})^n}{K + K_1(e^{-\mu \tau_M} A_{\tau_M})^n} - \gamma_M M
\]
\[
\frac{dB}{dt} = \alpha_B e^{-\mu \tau_B} M_{\tau_B} - \gamma_B B
\]
\[
\frac{dA}{dt} = \alpha_A B \frac{L}{K_L + L} - \beta_A B \frac{A}{K_A + A} - \gamma_A A
\]

We need to estimate these rate constants and time delays from the literature.

- Time delays: $\tau_M = .10 \text{ min}$, $\tau_B = 2.00 \text{ min}$.
- Degradation rates are harder to determine experimentally, and they vary widely in the literature. Sample values:

\[
\left\{
\begin{array}{ll}
 \gamma_A = .52 \text{ min}^{-1}, & .0135 \text{ min}^{-1}, & .00018 \text{ min}^{-1} \\
 \gamma_B = .00083 \text{ min}^{-1}, \\
 \gamma_M = .411 \text{ min}^{-1}, \\
 \mu \in (.0045, .0347)
\end{array}
\right.
\]
Estimating constants for our Boolean model

Approach

We’ll select “middle of range” estimates for the rate constants:

- \(\mu = 0.03 \text{ min}^{-1} \),
- \(\gamma_A = 0.014 \text{ min}^{-1} \Rightarrow \tilde{\gamma}_A = \gamma_A + \mu = 0.044 \),
- \(\gamma_B = 0.001 \text{ min}^{-1} \Rightarrow \tilde{\gamma}_B = \gamma_B + \mu = 0.031 \),
- \(\gamma_M = 0.411 \text{ min}^{-1} \Rightarrow \tilde{\gamma}_M = \gamma_M + \mu = 0.441 \).

Degradation is assumed to be exponential decay: \(x' = -kx \) implies \(x(t) = Ce^{-kt} \).

The half-life is the time \(t \) such that:

\[
x(t) = Ce^{-kt} = 0.5C \quad \Rightarrow \quad e^{-kt} = 0.5 \quad \Rightarrow \quad -kt = \ln \frac{1}{2} \quad \Rightarrow \quad t = \frac{\ln 2}{k}
\]

Half-lives

- \(\tilde{h}_A = \frac{\ln 2}{\gamma_A} = 15.753 \) \((\text{approx. 1 time-step to decay}) \)
- \(\tilde{h}_B = \frac{\ln 2}{\gamma_B} = 22.360 \) \((\text{approx. 2 time-steps to decay}) \)
- \(\tilde{h}_M = \frac{\ln 2}{\gamma_M} = 1.5 \) \((\text{approx. 0 time-steps to decay}) \)
A Boolean model incorporating dilution and degradation

Model assumptions

- Variables are M, B, A.
- Glucose absent. Intracellular lactose present, two parameters: L and L_m.
- Time-step ≈ 12 min.
- Ignore (all $\ll 12$): $\tau_M = .10$ min, $\tau_B = 2$ min, $\tilde{h}_M = 1.572$ min.
- Introduce variables for dilution and degradation:
 - A_{old} (since $\tilde{h}_A \approx 15.8 \approx 1$ timestep)
 - B_{old}, $B_{old(2)}$ (since $\tilde{h}_B \approx 22.4 \approx 2$ timesteps)

Proposed model

\[
\begin{align*}
 f_M &= A \\
 f_A &= (B \land L_m) \lor L \lor \left(A \land \overline{A_{old}} \land \overline{B} \right) \\
 f_{A_{old}} &= \left(\overline{B} \lor L_m \right) \land L \land A
\end{align*}
\]

\[
\begin{align*}
 f_B &= M \lor \left(B \land \overline{B_{old(2)}} \right) \\
 f_{B_{old(1)}} &= \overline{M} \land B \\
 f_{B_{old(2)}} &= \overline{M} \land B_{old(1)}
\end{align*}
\]

Most of the functions should be self-explanatory.
A Boolean model incorporating dilution and degradation

Justification for f_A

$$f_A = (B \land L_m) \lor L \lor \left(A \land \overline{A_{old}} \land \overline{B} \right)$$

There are 3 ways for allolactose to be available at $t + 1$:

(i) β-galactosidase and at least medium levels of lactose are present;
(ii) high levels of lactose (assume basal concentrations of β-galactosidase);
(iii) Enough allolactose is present so that it’s not degraded below the threshold, and no β-galactosidase is present.

Let’s write our model into polynomials form, with parameters (L, L_m) and variables $(x_1, x_2, x_3, x_4, x_5, x_6) = (M, A, A_{old}, B, B_{old(1)}, B_{old(2)})$:

$$f_M = A$$
$$f_A = (B \land L_m) \lor L \lor \left(A \land \overline{A_{old}} \land \overline{B} \right)$$
$$f_{A_{old}} = \left(\overline{B} \lor L_m \land L \right) \land A$$
$$f_B = M \lor \left(B \land \overline{B_{old(2)}} \right)$$
$$f_{B_{old(1)}} = \overline{M} \land B$$
$$f_{B_{old(2)}} = \overline{M} \land B_{old(1)}$$

$$f_1 = x_2$$
$$f_2 = x_2(1+x_3)(1+x_4) + (L_m x_4 + L + x_4 LL_m) + x_2(1+x_3)(1+x_4)(L_m x_4 + L + x_4 LL_m)$$
$$f_3 = (1 + x_4 L_m)(1 + L)x_2$$
$$f_4 = x_1 + x_4(1 + x_6) + x_1 x_4(1 + x_6)$$
$$f_5 = (1 + x_1)x_4$$
$$f_6 = (1 + x_1)x_5$$
Using Sage to compute the fixed points (high lactose)

```python
P.<x1,x2,x3,x4,x5,x6> = PolynomialRing(GF(2), 6, order = 'lex'); P
Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6 over Finite Field of size 2

L=1;
Lh=1;
print "L =", L;
print "L_h =", Lh;

L = 1
L_h = 1

I = ideal(x1+x2, x2+(L*x4+Lh+x4*L*Lh)+(x2*(1+x3)*(1+x4))+(L*x4+Lh+x4*L*Lh)*(x2*(1+x3)*(1+x4)), x3+(1+x4*L)*(1+Lh)*x2, x4+x1+x4*(1+x6)+x1*x4*(1+x6), x5+(1+x1)*x4, x6+(1+x1)*x5); I
Ideal (x1 + x2, x2 + 1, x3, x1*x4*x6 + x1*x4 + x1 + x4*x6, x1*x4 + x4 + x5, x1*x5 + x5 + x6) of Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6 over Finite Field of size 2

B = I.groebner_basis(); B
[x1 + 1, x2 + 1, x3, x4 + 1, x5, x6]
```

Conclusion: There is a unique fixed point,

\[(M, A, A_{old}, B, B_{old(1)}, B_{old(2)}) = (x_1, x_2, x_3, x_4, x_5, x_6) = (1, 1, 0, 1, 0, 0) \]

This is exactly what we expected: the lac operon is ON.
Using Sage to compute the fixed points (low lactose)

We need to backsubstitute. Recall that $x_i^k = x_i$ for all k.

The last equation: $x_6^6 + x_6^4 + x_6^3 = 0$ implies $x_6 = 0$.

Plug this into the previous equation: $x_5 + x_6^4 + x_6 = 0$ (with $x_6 = 0$) implies $x_5 = 0$.

And so on. We get a unique fixed point:

$$(M, A, A_{\text{old}}, B, B_{\text{old}(1)}, B_{\text{old}(2)}) = (x_1, x_2, x_3, x_4, x_5, x_6) = (0, 0, 0, 0, 0, 0)$$

This is exactly what we expected: the lac operon is OFF.
Using Sage to compute the fixed points (medium lactose)

```python
P.<x1,x2,x3,x4,x5,x6> = PolynomialRing(GF(2), 6, order = 'lex'); P

Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6 over Finite Field of size 2

L=1;
Lh=0;
print "L =", L;
print "L_h =", Lh;

L = 1
L_h = 0

I = ideal(x1+x2, x2+(L*x4+Lh+x4*Lh)+(x2*(1+x3)*(1+x4))+(L*x4+Lh+x4*Lh)*(x2*(1+x3)*(1+x4)), x3+(1+x4*L)*
(1+Lh)*x2, x4+x1+x4*(1+x6)+x1*x4*(1+x6), x5+(1+x1)*x4, x6+(1+x1)*x5); I

Ideal (x1 + x2, x2*x3*x4^2 + x2*x3 + x2*x4^2 + x4, x2*x4 + x2 + x3, x1*x4*x6 + x1*x4 + x1 + x4*x6, x1*x4 +
+ x4 + x5, x1*x5 + x5 + x6) of Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6 over Finite Field
of size 2

B = I.groebner_basis(); B

[x1 + x4 + x6^9 + x6^8 + x6^5 + x6^4, x2 + x4 + x6^9 + x6^8 + x6^5 + x6^4, x3 + x6^9 + x6^5, x4^2 + x4 +
x6^11 + x6^10 + x6^9 + x6^8 + x6^6, x4*x6 + x6^10 + x6^9 + x6^6 + x6^2, x5 + x6^8 + x6^4, x6^12 + x6^9 +
x6^5 + x6^4 + x6]
```

The last (7th) equation implies \(x_6 = 0 \). The 6th one then implies \(x_5 = 0 \).

The 5th equation gives no information (\(x_4 \) can be anything), as does the 4th (\(x_4^2 + x_4 = 0 \)).

The 3rd equation says \(x_3 = 0 \).

The 2nd equation says \(x_2 = x_4 \), and the 1st equation says \(x_1 = x_4 \).

We get two fixed points:

\[
(M, A, A_{\text{old}}, B, B_{\text{old}(1)}, B_{\text{old}(2)}) = (x_1, x_2, x_3, x_4, x_5, x_6) = (0, 0, 0, 0, 0, 0), \text{ or } (1, 1, 0, 1, 0, 0).
\]
Fixed points of our model and bistability

Here is a table showing the fixed points of our model, depending on whether extracellular lactose levels are low, medium, or high.

<table>
<thead>
<tr>
<th>Inducer level</th>
<th>L</th>
<th>L_m</th>
<th>M</th>
<th>A</th>
<th>A_{old}</th>
<th>B</th>
<th>$B_{\text{old}(1)}$</th>
<th>$B_{\text{old}(2)}$</th>
<th>operon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low lactose</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
</tr>
<tr>
<td>High lactose</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>ON</td>
</tr>
<tr>
<td>Medium lactose</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
</tr>
<tr>
<td>Medium lactose</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>ON</td>
</tr>
</tbody>
</table>

Suppose lactose concentration is low ($L = L_m = 0$), and so the operon is OFF. The current state is

$$(M, A, A_{\text{old}}, B, B_{\text{old}(1)}, B_{\text{old}(2)}) = (x_1, x_2, x_3, x_4, x_5, x_6) = (0, 0, 0, 0, 0, 0),$$

Now, let’s change L_m from 0 to 1, increasing the lactose level to medium. We are now in the 3rd fixed point above, and so the operon is still OFF.

Conversely, suppose lactose concentration is high ($L = L_m = 1$), and so the operon is ON. The current state is

$$(M, A, A_{\text{old}}, B, B_{\text{old}(1)}, B_{\text{old}(2)}) = (x_1, x_2, x_3, x_4, x_5, x_6) = (1, 1, 0, 1, 0, 0),$$

Now, let’s change L from 1 to 0, reducing the lactose level to medium. This takes us to the 4th fixed point above, and so the operon is still ON.
A Boolean model incorporating dilution & degradation, and time-delays

Instead of the a “middle value” (.0135 min$^{-1}$), let’s choose the high estimate $\gamma_A = .52$ min$^{-1}$.

This makes the half-life of A (which was $\tilde{h}_A = 15.753$) much smaller:

$$\tilde{h}_A = \frac{\ln 2}{\gamma_A} = 1.260, \quad \tilde{h}_B = \frac{\ln 2}{\gamma_B} = 22.360 \quad \tilde{h}_M = \frac{\ln 2}{\gamma_M} = 1.5$$

In this case, let’s choose a much smaller time-step (e.g., $t = 1$ min).

We can no longer ignore all of the time-delays, so we introduce the following new variables:

- M_1, M_2 to model the delayed effect (by $\tau_B = 2$ min) of mRNA on the production of β-galactosidase.
- A_1 to model the delayed action of A on the production of mRNA by $\tau_M = .1$ min.

We will use the following new variables to model dilution & degradation:

- M_{old} since $\tilde{h}_M = 1.5$ is approximately 1 time-step.
- A_{old} since $\tilde{h}_A = 1.26$ is approximately 1 time-step.
- $B_{\text{old}(1)}, B_{\text{old}(2)}$ since loss of β-galactosidase is slower.

Remark

We really should use more variables, e.g., $B_{\text{old}(1)}, B_{\text{old}(2)}, \ldots, B_{\text{old}(22)}$ to accurately track the loss of β-galactosidase. However, we will argue shortly why this won’t matter.
A Boolean model incorporating dilution & degradation, and time-delays

Proposed model

\[
\begin{align*}
 f_M &= A_1 \lor (M \land \overline{M_{\text{old}}}) \\
 f_{M_1} &= M \\
 f_{M_2} &= M_1 \\
 f_{M_{\text{old}}} &= \overline{A_1} \land M \\
 f_A &= (B \land L_m) \lor L \lor (A \land \overline{A_{\text{old}}} \land \overline{B})
\end{align*}
\]

\[
\begin{align*}
 f_{A_1} &= A \\
 f_{A_{\text{old}}} &= (\overline{B} \lor \overline{L_m}) \land \overline{L} \land A \\
 f_B &= M_2 \lor (B \land \overline{B_{\text{old}(2)}}) \\
 f_{B_{\text{old}(1)}} &= \overline{M_2} \land B \\
 f_{B_{\text{old}(2)}} &= \overline{M_2} \land B_{\text{old}(1)}
\end{align*}
\]

Analysis of the long-term behavior of this model leads to similar results as the previous one.

<table>
<thead>
<tr>
<th>Lactose</th>
<th>(L)</th>
<th>(L_m)</th>
<th>(M)</th>
<th>(M_1)</th>
<th>(M_2)</th>
<th>(M_{\text{old}})</th>
<th>(B)</th>
<th>(B_{\text{old}(1)})</th>
<th>(B_{\text{old}(2)})</th>
<th>(A)</th>
<th>(A_1)</th>
<th>(A_{\text{old}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0</td>
</tr>
<tr>
<td>High</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
A Boolean version of the 5-variable ODE model

5-variable ODE model (Yildirim and Mackey, 2004)

Let $M(t) = \text{mRNA}$, $B(t) = \beta$-galactosidase, $A(t) = \text{allo lac}$, $P(t) = \text{lac permease}$, $L(t) = \text{lactose (concentrations)}$. Extracellular lactose (L_e) is a parameter.

\[
\begin{align*}
\frac{dM}{dt} &= \alpha_M \frac{1 + K_1(e^{-\mu t M} A_{\tau M})^n}{K + K_1(e^{-\mu t M} A_{\tau M})^n} + \Gamma_0 - \gamma_M M \\
\frac{dB}{dt} &= \alpha_B e^{-\mu t B} M_{\tau B} - \gamma_B B \\
\frac{dA}{dt} &= \alpha_{AB} \frac{L}{K_L + L} - \beta_{AB} \frac{A}{K_A + A} - \gamma_A A \\
\frac{dP}{dt} &= \alpha_P e^{-\mu (\tau_B + \tau_P)} M_{\tau B + \tau_P} - \gamma_P P \\
\frac{dL}{dt} &= \alpha_L P \frac{L_e}{K_{Le} + L_e} - \beta_{Le} P \frac{L}{K_{Le} + L} - \alpha_{AB} \frac{L}{K_L + L} - \gamma_L L
\end{align*}
\]

We’ll use the same estimates for degradation and delay constants as in the 3-variable model:

\[
\begin{align*}
\mu &= .03 \text{ min}^{-1}, \quad \gamma_A = \gamma + \mu = .044, \quad \gamma_B = \gamma + \mu = .031, \quad \gamma_M = \gamma + \mu = .441.
\end{align*}
\]

New degradation constants estimated at $\gamma_L = 0.0 \text{ min}^{-1}$, and $\gamma_P = .65 \text{ min}^{-1}$. Delay constant estimate is $\tau_P = .83 \text{ min}$.

We need a new parameter to help distinguish high vs. medium extracellular lactose: L_{em}.
A Boolean version of the 5-variable ODE model

Model assumptions

- Variables are \(M, B, A, P, L\).
- Glucose absent. Extracellular lactose present, two parameters: \(L_e\) and \(L_{em}\).
- Ignore time-delays (Yildirim and Mackey showed that they do not affect bistability).
- Time-step \(\approx 12\) min.
- Ignore (all \(\ll 12\)): \(\tau_M = .10\) min, \(\tau_B = 2\) min, \(\hat{h}_M = 1.572\) min.
- Introduce dilution & degradation variables: \(A_{old}, B_{old}, L_{old}, P_{old}\).

Proposed model

\[
\begin{align*}
 f_M &= A \lor (M \land M_{old}) \\
 f_{M_{old}} &= \overline{A} \land M \\
 f_A &= (B \land L) \lor (L \land L_e) \lor (A \land A_{old} \land \overline{B}) \\
 f_{A_{old}} &= (\overline{B} \lor \overline{L}) \land (\overline{L} \lor L_e) \land A \\
 f_L &= ((P \land L_{em}) \lor L_e) \lor ((L \land L_{old}) \land (\overline{B} \land \overline{P})) \\
 f_{L_{old}} &= (\overline{P} \lor L_{em}) \land L_e \land L
\end{align*}
\]
A Boolean model incorporating dilution and degradation

Justification for f_A

$$f_A = (B \land L) \lor (L \land L_e) \lor \left(A \land \overline{A_{\text{old}}} \land \overline{B} \right)$$

There are 3 ways for allolactose to be available at $t + 1$:

(i) β-galactosidase and lactose are present.

(ii) Internal lactose is present and the concentration of extracellular lactose is high. This ensures that by time $t + 1$, intracellular lactose concentration is high enough to find available trace amounts of β-galactosidase.

(iii) The concentration of allolactose is high enough that it won’t be reduced below the threshold due to dilution & degradation, or to conversion (by β-galactosidase) to glucose & galctose.

Justification for f_L

$$f_L = ((P \land L_{em}) \lor L_e) \lor \left((L \land \overline{L_{\text{old}}}) \land (\overline{B} \land \overline{P}) \right)$$

There are 3 ways for intracellular lactose to be available at $t + 1$:

(i) Lac permease and extracellular lactose are available.

(ii) There are high levels of extracellular lactose available (even if lac permease level is low).

(iii) There is enough lactose in the cell that it won’t be lost to dilution & degradation, transport out, or conversion into allolactose (by β-galactosidase).
A Boolean model incorporating dilution and degradation

Model:

\[
\begin{align*}
 f_M &= A \lor (M \land \overline{M_{\text{old}}}) \\
 f_{M_{\text{old}}} &= \overline{A} \land M \\
 f_A &= (B \land L) \lor (L \land L_e) \lor (A \land \overline{A_{\text{old}}} \land \overline{B}) \\
 f_{A_{\text{old}}} &= (\overline{B} \lor \overline{L}) \land (\overline{L} \lor \overline{L_e}) \land A \\
 f_L &= ((P \land L_{\text{em}}) \lor L_e) \lor ((L \land \overline{L_{\text{old}}}) \land (\overline{B} \land \overline{P})) \\
 f_{L_{\text{old}}} &= ((\overline{P} \lor \overline{L_{\text{em}}}) \land \overline{L_e}) \land P \\
 f_B &= M \lor (B \land \overline{B_{\text{old}}}) \\
 f_{B_{\text{old}}} &= \overline{M} \land B \\
 f_P &= M \lor (P \land \overline{P_{\text{old}}}) \\
 f_{P_{\text{old}}} &= \overline{M} \land P
\end{align*}
\]

Fixed points:

<table>
<thead>
<tr>
<th>Ext. Lactose</th>
<th>(L_e)</th>
<th>(L_{\text{em}})</th>
<th>(M)</th>
<th>(M_{\text{old}})</th>
<th>(B)</th>
<th>(B_{\text{old}})</th>
<th>(A)</th>
<th>(A_{\text{old}})</th>
<th>(L)</th>
<th>(L_{\text{old}})</th>
<th>(P)</th>
<th>(P_{\text{old}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0</td>
</tr>
<tr>
<td>High</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Medium</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Medium</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>