1. Consider the simplicial complex \(\Delta = \{\emptyset, a, b, c, d, e, ab, ac, bc, bd, cd, abc\} \) over the set \(X = \{a, b, c, d, e\} \). The 5-dimensional Boolean lattice \(2^X \) is shown below.

 (i) Sketch the simplicial complex and find the maximal faces.
 (ii) Circle each node in the Boolean lattice \(2^X \) corresponding to a face of \(\Delta \), and additionally shade in those faces that are maximal.
 (iii) Box each node that corresponds to a non-face, and shade in those that are minimal.
 (iv) Find the Stanley-Reisner ideal \(I_{\Delta^c} \) and compute its primary decomposition.

\[
\begin{align*}
\text{abcde} & \quad \text{abcd} \\
\text{abce} & \quad \text{abde} \\
\text{acde} & \quad \text{bcde} \\
\text{abc} & \quad \text{abd} \\
\text{abe} & \quad \text{acd} \\
\text{ace} & \quad \text{ade} \\
\text{bcd} & \quad \text{bce} \\
\text{bde} & \quad \text{cde} \\
\text{ab} & \quad \text{ac} \\
\text{ad} & \quad \text{ae} \\
\text{bc} & \quad \text{bd} \\
\text{be} & \quad \text{cd} \\
\text{de} & \quad \text{e} \\
\phi & \quad \text{∅}
\end{align*}
\]

2. Recall from lecture that we reverse-engineered the model space of the following time-series over \(\mathbb{F}_2 \):

\[
(0, 0, 1) \xrightarrow{f} (1, 0, 1) \xrightarrow{f} (1, 1, 1) \xrightarrow{f} (1, 1, 0) \xrightarrow{f} (0, 1, 0) \xrightarrow{f} (0, 0, 0).
\]

In this problem, you will reverse-engineer the wiring diagram.

(a) Do the following steps for each \(k = 1, 2, 3 \).
 i. Write down the corresponding set of data
 \[
 \mathcal{D}_k := \{(s_1, t_{1k}), \ldots, (s_5, t_{5k})\}
 \]
 that arises from the \(k\)th coordinate of this time-series.
 ii. Compute the monomials \(m(s_i, s_j) \) for which \(t_{ik} \neq t_{jk} \), and find the ideal \(I_{\Delta^c_k} \) of non-disposible sets.
 iii. Use a computer program to find the primary decomposition of \(I_{\Delta^c_k} \).
 iv. Find all min-sets of \(\mathcal{D}_k \), and sketch a wiring diagram for each. Only include edges incident to \(x_k \).

(b) Repeat Steps (ii)–(iv) from Part (a) but to find the signed min-sets. That is, use the pseudomonomials \(p(s_i, s_j) \) to compute the ideal \(J_{\Delta^c_k} \) of signed non-disposible sets.
3. Consider the following time series of a 3-node local model over \mathbb{F}_3:

$$(1, 1, 1) \xrightarrow{f} (2, 0, 1) \xrightarrow{f} (2, 0, 0) \xrightarrow{f} (0, 2, 0) \xrightarrow{f} (0, 2, 2).$$

For reference, here are the input vectors s_i and output vectors t_i:

\[
\begin{align*}
 s_1 &= (s_{11}, s_{12}, s_{13}) = (1, 1, 1), & t_1 &= (t_{11}, t_{12}, t_{13}) = (2, 0, 1), \\
 s_2 &= (s_{21}, s_{22}, s_{23}) = (2, 0, 1), & t_2 &= (t_{21}, t_{22}, t_{23}) = (2, 0, 0), \\
 s_3 &= (s_{31}, s_{32}, s_{33}) = (2, 0, 0), & t_3 &= (t_{31}, t_{32}, t_{33}) = (0, 2, 2), \\
 s_4 &= (s_{41}, s_{42}, s_{43}) = (0, 2, 2), & t_4 &= (t_{41}, t_{42}, t_{43}) = (0, 2, 2).
\end{align*}
\]

(a) Find polynomials f_1, f_2, f_3 in $\mathbb{F}_3[x_1, x_2, x_3]/\langle x_1^3 - x_1, x_2^3 - x_2, x_3^3 - x_3 \rangle$ that fit the data. That is, $f_j(s_i) = t_{ij}$ for all $i = 1, 2, 3, 4$.

(b) For each $i = 1, 2, 3, 4$, write down the ideal $I_i = I(s_i)$ of polynomials that vanish on the data point s_i.

(c) Compute a Gröbner basis G for the ideal I of polynomials that vanish on all of the input data points. You may use Sage, Singular, or Macaulay2, but use the graded reverse lexicographical monomial order GRevLex (this is the default).

(d) Write the model space of the time series using your answer to Part (a) as the particular solution.

(e) Compute the normal form of f_1, f_2, f_3 with respect to G by reducing them modulo the ideal I. Write the model space using this particular solution.

(f) Compare the sizes of the model space and the vanishing ideal.