
Exercises.

1. In this exercise, you will construct the finite field of order 9.

 (a) Find an irreducible polynomial of degree 2 in $\mathbb{F}_3[x]$. Note that any such $f \in \mathbb{F}_3[x]$ for which $f(c) \neq 0$ for all $c \in \mathbb{F}_3 = \{0, 1, 2\}$ will work.

 (b) Write down all 9 elements of $\mathbb{F}_9 \cong \mathbb{F}_3[x]/I$, where $I = \langle f \rangle$ is the ideal generated by the polynomial you found in Part (a). All of the elements should be of the form $g + I$, for some $g \in \mathbb{F}_3[x]$.

 (c) Construct the addition table of \mathbb{F}_9 and the multiplication table of $\mathbb{F}_9^* := \mathbb{F}_9 \setminus \{0\}$, like what we did for \mathbb{F}_4 in class. You should omit the “$+ I$” for clarity of notation.

2. Consider the reactions where two substrates S and T compete for binding to an enzyme E to produce two different products P and Q:

 $$
 E + S \xrightarrow{p_1} ES \xrightarrow{p_3} P + E,
 $$

 $$
 E + T \xrightarrow{q_1} ET \xrightarrow{q_3} Q + E.
 $$

 Assume that each reaction follows the Michaelis-Menten kinetics. Also, assume that that the initial enzyme concentration is $E_0 = [E] + [ES] + [ET]$.

 (a) Derive rate equations for P and Q in this system in terms of $[ES]$ and $[ET]$. That is, determine $d[P]/dt$ and $d[Q]/dt$.

 (b) Derive rate equations for ES and ET.

 (c) Assume that the enzyme-substrate complexes reach equilibrium quickly: $d[ES]/dt \approx 0$ and $d[ET]/dt \approx 0$. Solve for $[E]$ in each of these equations.

 (d) Equate the two expressions for $[E]$ from Part (c) and solve for $[ET]$.

 (e) Solve for $[ES]$ by plugging your answers to Parts (c) and (d) into $E_0 = [E] + [ES] + [ET]$. You should not have $[E]$ or $[ET]$ in your final answer.

 (f) Plug this into the original ODE for $d[P]/dt$.

 (g) Repeat the previous three steps but solve for $[ES]$ instead of $[ET]$.

3. Recall our original 3-variable Boolean model of the *lac* operon:

 $$
 f_M = \overline{G_e} \land (L \lor L_e),
 $$

 $$
 f_E = M,
 $$

 $$
 f_L = \overline{G_e} \land ((E \land L_e) \lor (L \land \overline{E})).
 $$
For each of the 4 possible initial conditions, \(G_e, L_e \in \mathbb{F}_2^2 \), the model had one connected component with the biologically correct fixed point. Compute the probability that this would have happened purely by chance. (Assume a uniform distribution.)

4. Recall another model of the \(lac \) operon:

\[
\begin{align*}
 f_M &= A, \\
 f_B &= M, \\
 f_A &= (B \land L_m) \lor L \lor (A \land \overline{B}).
\end{align*}
\]

Here, \(L \) and \(L_m \) are parameters corresponding to

- High lactose: \(L = 1, L_m = 1 \).
- Medium lactose: \(L = 0, L_m = 1 \).
- Low lactose levels: \(L = 0, L_m = 0 \).

We’ll ignore any state for which \(L = 1, L_m = 0 \).

Does this model exhibit bistability? Why or why not?